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Abstract

This work focuses on learning non-canonical Hamiltonian dynamics from data,
where long-term predictions require the preservation of structure both in the learned
model and in numerical schemes. Previous research focused on either facet, respec-
tively with a potential-based architecture and with degenerate variational integrators,
but new issues arise when combining both. In experiments, the learnt model is some-
times numerically unstable due to the gauge dependency of the scheme, rendering
long-time simulations impossible. In this paper, we identify this problem and propose
two different training strategies to address it, either by directly learning the vector
field or by learning a time-discrete dynamics through the scheme. Several numerical
test cases assess the ability of the methods to learn complex physical dynamics, like
the guiding center from gyrokinetic plasma physics.

1 Introduction

With the rise in machine learning research, the connection between neural networks and
differential equations—particularly ordinary differential equations (ODEs)—has become an
increasingly active area of study, explored through three main application domains. The
first approach interprets certain neural networks, such as Residual Networks (ResNets), as
discretizations of ODEs [ , , ]. This perspective not only enables the
design of novel architectures but also provides deeper insight into the internal dynamics
of neural networks. The second line of research views gradient descent methods as dis-
cretizations of continuous-time gradient flows [ ], allowing a more refined analysis
of learning dynamics by studying trajectories in parameter space. The third axis concerns
time series prediction. Instead of using models such as Recurrent Neural Networks (RNNs)
or Long short-term memory architectures (LSTM), when it is reasonable to assume that
the data stems from an underlying continuous process, it becomes relevant to model these
series with ODEs or stochastic differential equations (SDEs) [ ]. This work belongs to
that third category.

Many contributions have been made to the learning of differential equations: the aim
is then to determine the vector field, whose integral lines fit the observed data. Some,
such as Sparse Identification of Non-linear Dynamics (SINDy) [ , ], aim to
infer the analytic form of the governing equations from time transitions between pairs of
states. Similar strategies have been developed using neural networks. Other works are
based on unrolled training over multiple time steps [ ], either to learn discrete-time
flows that are then composed, or to model continuous-time dynamics directly [ ]. In
physical applications, learning ODEs is particularly relevant for model reduction [ ,

, , , ] to capture the dynamics of latent variables or even
to discover new physical laws [ ]. From both the standpoint of physical modeling and
long-term numerical stability, the preservation of conservative and dissipative structures
is of key importance. This has naturally raised the question of whether such structures
can be preserved by learning algorithms.

In the case of dissipative systems, some works have focused on the joint learning
of a Lyapunov function and its associated ODE [ ]. A large part of the literature,
however, has focused on conservative ODEs, particularly those arising from Lagrangian



or Hamiltonian formalisms. For such systems, it is well known that preserving the un-
derlying geometric structures, especially symplectic structures, is crucial to ensure long-
term stability. In the context of machine learning, the seminal work on Hamiltonian
Neural Networks (HNN) [ ] proposed to learn the vector field as the gradient of
a Hamiltonian function, described with a neural network. It demonstrated that preserving
the Hamiltonian structure—i.e., directly learning the Hamiltonian function—significantly
improves the long-term stability of the learned dynamics. Since then, a range of ap-
proaches have been proposed to learn dynamics that respect Lagrangian or Hamiltonian
structures [ , , ], or to directly learn symplectic discrete-time flows
[ , , ]. Most of these contributions focus on canonical Hamiltonian
systems, where the dynamics are expressed in R?? with the standard symplectic form.
However, many physical systems (e.g., fluid mechanics, plasma physics, or constrained
mechanical systems) do not follow this canonical form. This leads to non-canonical sys-
tems, where the underlying geometry is more complex and often described by generalized
Poisson structures. Such dynamics are then described by both a Hamiltonian function and
a skew-symmetric space-dependent matrix, defining the underlying Poisson structure: this
matrix is invertible for non-canonical Hamiltonian system and non-invertible for general
Poisson system. A few recent works have begun to extend previous methods to these non-
canonical cases [ ] and to Poisson systems [ , , ]. The present
work falls within this direction. It focuses specifically on non-canonical Hamiltonian sys-
tems, building on the contributions of [ ]. We first introduce the additional chal-
lenges raised by the non-canonical setting—especially the fact that the geometric structure
depends on the system state—before proposing two novel approaches to learn dynamics
that preserve such structures.

1.1 Long-time numerical behaviour

In the seminal work [ ] on learning dynamics while preserving the Hamiltonian
structure, the authors demonstrate the benefits of this approach. However, the respective
roles of the two key ingredients—learning dynamics that preserve the Hamiltonian struc-
ture, and using a suitable numerical scheme to integrate the learned equation—remain to
be fully clarified. In the first part of this work, we show that it is primarily the structure-
preserving learning that improves medium-term prediction accuracy, while, over longer
time horizons, the use of an appropriate numerical integrator remains essential.

In [ ], the authors propose an approach for the non-canonical case, based on
enforcing the closedness of the symplectic form. This method shows promising long-term
behavior, but it relies on a standard integration scheme (RK4), whose limitations become
apparent when simulations are extended further in time. It is therefore natural to consider
structure-preserving schemes, such as Discrete Variational Integrators (DVI) type [ ].

This example highlights a key point: learning an equation with the correct geometric
structure is not enough. In complex cases such as non-canonical ODEs, even numerically
adapted schemes like DVI may fail to accurately integrate the learned equation. We will
illustrate this issue with a concrete example and analyze possible reasons behind such
failure. Addressing this limitation is the main challenge this work aims to tackle.

1.2 Two training strategies depending on the dataset

Vector-field learning When using a scheme such as DVI to solve a non-canonical prob-
lem learned through the approach of [ ], it can happen that the scheme produces a



completely incorrect prediction. This stems from the fact that the scheme does not only
simulate the evolution in the phase space, it also involves the evolution of the symplectic
potential—it is not gauge invariant. This means that its error bound may increase if it is not
penalised in the learning process, rendering it useless for simulating the learnt problem
over either short or long times. We solve this problem by adding a penalisation term to
the loss such which represents this error constant. To our knowledge, this error was not
derived previously, and it provides insight into the gauge-dependency of the DVI.

Scheme learning One might consider the situation where the vector field is not known at
any collocation points but snapshots along trajectories are known. In that case, the dataset
consists of pairs (zj;—g, z;—) € M?* with some time-step h. This is the original setting of
Neural ODEs [ ], where the authors fit a (learnt) vector field such that trajectories
along it map the input to the output. For canonical Hamiltonian problems, specific archi-
tectures such as SympNets [ ] or HénonNets [ , ] explicitly produce a
structure-preserving mapping from one snapshot to the next.

For non-canonical problems, however, no such architecture is yet known. Therefore,
we choose a geometric numerical scheme and fit the learnt potentials such that using
it for simulations will yield near-exact (discrete) trajectories. This method allows long-
time simulations which can be more accurate than those on the reference model, though
the time-step and numerical scheme must not change. This behaviour is similar to hyper-
solvers' [ , , ]. Because the scheme is implicit, a cheap initial guess
is produced by a naive neural network with no specific architecture. This circumvents the
stability issue of the DVI on the reference model and allows larger time-steps than usual.

1.3 OQutline

The outline of this paper is as follows. Section 2 presents non-canonical Hamiltonian
framework and the DVI numerical scheme, based on the Lagrangian formulation. Numer-
ical tests also illustrate the advantages of the DVI for long-time simulations and issues
related to gauge invariance when used in geometric model learning. In Section 3, we in-
troduce the vector-field learning and the scheme learning strategies, adapted to or based
on to DVL Finally, a series of numerical experiments (Lotka-Volterra, massless charged
particle and guiding center) is conducted in Section 5 to assess the ability of both methods
to capture the dynamics.

2 Non-canonical Hamiltonian dynamics

Canonical Hamiltonian systems form a fundamental class of dynamical systems with a
specific geometric structure. They are written as

= J'VH(z),

where z(t) € R?? denotes the time-dependent coordinates, H (z) € R denotes the Hamil-
tonian function representing the total energy of the system, and J is the canonical sym-
plectic matrix given by

0 -Id
J = [Id 0 ] € Maq(R).

'For hypersolvers, the time-step may change, but the numerical scheme is tied to the network.



These systems have been extensively studied from theoretical and numerical perspectives,
and more recently from a machine learning point of view. However, many physically rele-
vant problems are not naturally expressed in canonical coordinates, even though they re-
tain an underlying Hamiltonian structure. These systems, known as non-canonical Hamil-
tonian systems, take the more general form:

t=W(2)"'VH(2), (2.1)

where W(z) € Maq(R), skew-symmetric, defines a closed and non-singular 2-form (i.e.
its inverse defines a Poisson bracket).

2.1 A subclass of non-canonical problems

We will focus on a subclass of non-canonical problems, where the symplectic form W is
defined as the exterior derivative of a one-form, which guarantees its closedness. It means
that it is obtained from a mapping A : R?¢ — R?? called the symplectic potential, through
the relation

W =—dA=(D,A)" — D.A, (2.2)

where D, A denotes the Jacobian of A. In terms of coordinates, (D, A);; = g‘:}.

The symplectic form must derive from a potential for two reasons. Firstly, in [ 1,
the authors observe that learning the symplectic form as a skew-symmetric matrix without
additional structure generates neural models that are often unstable, with rapidly explod-
ing solutions.” Secondly, we later use a numerical method (described next in §2.2) which
requires that the symplectic potential takes the following simplified form:

Alz) = [ﬁ(z)] . (2.3)

With this choice, denoting z = (z,y)" with 2,y € RY, the symplectic two-form is the

block matrix

(2.4)

W [ww ~ (D) —<Dw>] |

(Dy9)T 0
with D,9 and Dy9 denoting the Jacobian of ¥ w.r.t. x and y respectively as in (2.2). Then
system (2.1) writes:

(D) & =V, H,
((D29) = (D)) & + (Dyd) § = —V,H,

where the gradient is the transpose of the differential.

Remark 2.1. Canonical Hamiltonian systems belong to this category of problems, setting
Y(x,y) = y. Because every non-canonical system admits a local change of variable which
transforms it into a canonical problem, this ansatz on the one-form may always be satisfied,
at least locally, up to a change of variable. To our knowledge, the question of whether it
can be satisfied globally for any (global) system of coordinates is still open.

*This might be due to the fact that the symplectic potential ensures the existence of Poincaré invariants
(similarly to the Hamiltonian ensuring the existence of an energy invariant). Similarly, the behavior of geo-
metric methods relies on generating functions [ , VI.5], which use the symplectic potential.



This has the immediate advantage of characterising the invertibility of W by the local
injectivity of y — ¥(x,y) at fixed z, giving a direct criterion for well-posedness of the
problem. The system may also readily be inverted, yielding the vector field

i = (Dy9)" "V, H, 25)
§=(Dy9)" T (Vo9 — Vo0 ) (V) TV, H — V,H). '
From this identity, one may apply standard numerical methods, as in [ ] where high-

order Runge-Kutta schemes with adaptive time-steps are used. Here, however, we are
interested in schemes specifically designed for this type of problems, namely “degenerate
variational integrators”.

2.2 Degenerate variational integrators

Just as symplectic integrators are essential for the long-term numerical integration of
canonical Hamiltonian systems [ ],preserving the geometric structure and quali-
tative behavior of the exact flow—it is equally important to design structure-preserving
integrators for non-canonical Hamiltonian systems. These systems often possess a gener-
alized symplectic or Poisson structure that must be respected to ensure physically mean-
ingful simulations over long time intervals. One of the main approaches to achieving this
goal is to recast the problem in a Lagrangian framework, and to construct discrete inte-
grators that mimic the variational derivation of the equations of motion. This leads to the
class of degenerate variational integrators (DVIs) [ ], which extend the ideas of vari-
ational integration to degenerate or non-canonical settings, allowing for the preservation
of geometric invariants even in the absence of a constant symplectic form. We now aim
to recall this Lagrangian formalism and the construction of the corresponding scheme.

Degenerate Lagrangian dynamics. System (2.1)-(2.2) can be obtained by first defining the
Lagrangian

L(z,zt) = A(z) - 2 — H(2), (2.6)

and the dynamics is then recovered by extremizing the action

[ 1 (s o)

yielding the so-called Euler-Lagrange equations:

% BZL; (Z(t)vz'(t))] = 25 (2(t), 2(t)), fori € {1,...,2d},

which, owing to the chain rule, can be written as

2d 8% ) y 2L ‘ y oL ‘ |
j; [azgazj (=(6), (1)) 2 + 5207 (z(t),z(t))z] = 5 (2(0,2(0), forie {1,....2d).

(2.7)
This particular choice of Lagrangian is called degenerate, as the vanishing of the Hessian
w.r.t. z; removes the second-order derivative Z from this last equation. Instead, it results
in (2.1) with the two-form (2.2).



When considering a symplectic potential A as in Eq. (2.3), denoting z = (x,%)T with
z,y € RY, the Lagrangian writes

L(x>y>xt7yt) :?9($,y) xt_H<':U7y) (28)

To avoid any confusion with (2.6), in the sequel we call this a properly degenerate La-
grangian. We note that this choice arises naturally, using the so-called “tautological one-
form” d(x,y) = y.

Degenerate variational integrators (DVI). Variational integrators are numerical schemes
based on a discrete Lagrangian (zo, z1) — L (20, 21), for instance Ly (z0,21) = L (zo, (21—
20)/h). The time-stepping scheme is then obtained from the discrete Euler-Lagrange equa-
tions, defined as

VoL (2n—1,2n) + Lr(2n, 2nt1)] = 0.

Here we consider the degenerate variational integrator from [ ] which relies on
the ansatz (2.8), and is derived from the discrete Lagrangian

Tp4+1 — Tn

- — H(Zn41, Ynt1)- (2.9)

Lh(xna Tn41, yn-i—l) = ﬂ(xn—i-la yn—i—l) :

The time-stepping scheme stems from the discrete Euler-Lagrange equations, which in
this case are written

an [Lh(xn_l’ Ln, yn) + Lh(fI,'n7 Tn+1, yn-i—l)] - 07
Vynsr Ln(@ns Tns1s Yng1) + Ln(Tnt1, Tniz, yni2)] = 0,

Usually, this would be written differentiating w.r.t. y,, and not y,, 1, but since these equa-
tions have to be satisfied for every n, the identity above is equivalent to the usual one.
This generates the time-stepping scheme

V(Tni1,Ynt1) = (T, Yn) + (Dad(2n, yn))T(xn —Tp-1) — AV H(Zn, Yn),
(Dy"&(xn—i-la yn-i—l))Txn—i—l = (Dyﬁ(«rn—i-la yn—i-l))Txn + hvyH(xn—l—la yn+1)~
(2.10)
While this may seem like a two-step method with the term x,,_; in the first equation, this
term may be obtained explicitly using the second equation,

Tp—1 = Ty — h(Dyﬁ(xn, yn))fTVyH(mn, Yn)-

As with the continuous problem, the scheme is well-defined if D, is invertible (up to
stability and regularity conditions). In practice, only x_; is computed. For later time-
steps, the term x,,_1 can be used from previous iterations.

We implemented this scheme using the automatic differentiation (AD) routines of
PyTorch to derive the Euler-Lagrange equations.” Because we only simulate problems
in low dimensions, Equation (2.10) is solved using a Newton method—the Jacobian also
being computed using AD. The initial guess of (2,41, yn+1) in the Newton iterations is
chosen using a single step of the explicit Euler method applied to (2.5).

31t should be noted that x,,—1 and ZTn+1 are assumed independent of x,, when deriving the Euler-Lagrange
equations. In PyTorch vernacular, they must be “detached” from x,, before differentiating.



Remark 2.2. The variational integrator is sensitive to gauge choice for the potential ).
Indeed, changing ¥(z, y) into ¥(z,y) + g(z), with a function g(z) with symmetric Jaco-
bian,

Dyg(a)" = Dyg(x) =0,

does not modify the symplectic matrix W (see Eq. (2.4)) and thus System (2.5), but change
the approximate solution computed with (2.10). Although the convergence holds whatever
the gauge is, the error constant may become quite large. Numerical examples will be
provided in Section 5.

2.3 Long time simulation

As discussed in this section, long time simulations using neural models requires both ge-
ometric numerical integration and structure-preserving learning strategies. We first com-
pare the long-time behavior of the standard RK4 scheme with the DVI (§2.2), justifying the
use of this specific scheme. Then, by partially reproducing the study of [ ], we il-
lustrate the importance of preserving the underlying geometric structure during training,
even without numerical considerations. Finally, we show that simply applying the DVI to
a neural model may result in unstable solutions, prompting the development of specific
training strategies in the next section.

Reference model. This study is conducted on a classical Lotka-Volterra problem which
can be found in [ 1,

t=z(1-y), y=yl>-2). (2.11)
This corresponds to the structure (2.5) with maps
Way) = —(@)fe.  H@y) —ot+y-2h@) -h).  @12)

In this case, a change of variable (¢,p) = (In(xz),In(y)) yields a canonical structure with
Hamiltonian (g, p) — e? + e’ — 2q — p. In general, however, such a change of variable is
defined locally, not globally. We shall therefore treat this problem as purely non-canonical.

Using the DVI.  Another important aspect of long-time simulations mentioned previously
is the numerical scheme, which must be appropriate —we introduced the DVI to that effect.
Figure 1 compares the results of long-time simulations on the reference model (2.11) using
either the standard RK4 (explicit Runge-Kutta of order 4) or the DVI with a large time-step.
In short time (clear yellow dots), the RK4 scheme is highly-accurate, as expected. In long
time, however, the numerical solution does not stay on the closed orbit and becomes less
and less accurate. Here the scheme dissipates energy as can be seen on the right-hand plot.
In contrast, the DVI does generate a periodic solution, though its orbit is clearly inaccurate
(as expected from a first-order scheme). This means that the error is fairly large in short
time, but the preservation of qualitative properties ensures that the long-time behaviour
of the numerical solution is closer to that of the exact solution.*

By exact solution, we mean a highly-accurate numerical solution computed using the solve_ivp routine
of SciPy with parameters atol=1e-12 and rtol=1e-10.
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Figure 1: (Lotka-Volterra) Long-time behaviour of the RK4 and DVI numerical schemes,
with initial condition zg = 1, yg = 1 and time-step h = 0.2. Left: solutions in phase space.
Only one out of 16 time-steps is displayed for the RK4 solution (to reduce file size), and
only the first time-steps of the DVI solution is displayed (the solution is periodic). Right:
relative error on the Hamiltonian as a function of time.

Defining neural networks. In [CMY21], the authors enforce the symplectic structure by
learning both the Hamiltonian Hg : R?? — R and the symplectic potential Ag : R?¢ —
R??. Echoing the presentation of §2.1, this allows the construction of the symplectic form
z — Wo(z) € Myy(R) with automatic differentiation (AD) using (2.2), to find the vector
field

faomean () .= We(2) ' VHe(2) (2.13)

(where VH is also computed using AD). The networks Ag, Hg are fitted on collocation
points (2, 2));c7r where T C N indexes the data and (Y = f(z()). This is done by
minimizing the loss
£a(©) 1= 2 312 = fo ) @19
i€
using an optimization method in batches.

Here we further impose the ansatz (2.3) nullifying the second half of the coordinates of
Ag, and therefore learn only the first half of the symplectic potential ¥g : R?¢ — R?. This
allows the use of the Degenerate Variational Integrator [FFB " 18] presented in Section 2.2.
To recover the vector-field, the symplectic form is constructed with (2.4).

Hard-coding structure. To show that the structure of model (2.13) is important, let us com-
pare the solutions of three different neural models with the reference (2.11). The baseline
neural model is a single multi-layer perceptron (MLP)

2[RRI (z) (2.15)

(with 2 hidden layers of dimension 40) which represents the vector-field. The “canonical”
neural model, usually called HNN [CDY19], consists a single MLP Hg from which the
vector-field is obtained by automatic differentiation (AD) as

2z f&(2) := J 'V He(2). (2.16)



IS
L

8 254

w
L

N}
L

no structure

T T T T T T T T
0 10 20 30 90 100 110 120
7

|
1
I 1
1 1 ] v\ \
s U YU A

ey

T T T 7 Fr T T T ™ fr T T T

0 10 20 30 90 100 110 120 0 10 20 30 90 100 110 120
t

Figure 2: (Lotka-Volterra) Solutions with initial condition ¢y = 1, ygp = 1 for the different
models (reference model (2.11), no structure neural model (2.15), canonical neural model
(2.16), non-canonical neural model (2.13)), obtained using solve_ivp.

The non-canonical model (2.13), consists of two separate MLPs, the symplectic potential
Yo and the Hamiltonian Hg, both of 2 hidden layers of size 30. For all networks, two
trainings are performed using the Adam optimizer and batches of size 500. The first train-
ing uses a learning rate Ir = 102 for 50 epochs, and the second Ir = 103 for 150 epochs.
The dataset and the MLP architecture will be detailed in the next sections.

Figure 2 displays a highly accurate numerical solution of each model, computed us-
ing the solve_ivp routine of SciPy with parameters rtol=1e-10 and atol=1e-12. The
same solutions are shown in phase-space in Figure 3 (left).Instead of yielding a closed (pe-
riodic) orbit, the baseline model diverges over time, making it unsuitable for long-time
simulation. While the canonical model generates a closed orbit, it is also visible that it
cannot accurately recreate the non-canonical vector-field. Despite the short training and
the small size of the networks, the non-canonical model recovers accurate dynamics.

On the right-hand graphs, it appears that on the trajectory of this model, the (reference)
Hamiltonian is preserved up to ~2%, while the baseline without structure diverges. This
is computed by evaluating the Hamiltonian function (2.12) at every time for each model’s
trajectory. We do not compare the learnt Hamiltonian functions with the reference one,
though each geometric neural model preserves its own Hamiltonian.

Unexpected instability. We now show that the DVI is sensitive to the gauge of the model,
which turn out to be important when the model is learnt from data. Consider the rightmost
plot of Figure 4, which shows that the solution of the neural model with structure obtained
asin [ ] (dotted black) is accurate compared to the reference model (gray). In purple
is the numerical solution using the DVI for two different times steps. Comparing it to the
reference model (left plot), the DVI is apparently less stable for the neural model. In fact,
when plotting several trajectories, many diverge after a few iterations (this will be shown
in §5.1).

Since d = 1, the equations of the continuous dynamics (2.5) are simplified, as the
antisymmetric part of D9 = 0,9 simply vanishes:

{¢=%HWWV%W%M,
§ = —0,H(z,y)/0,9(x, y).

10
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Figure 4: (Lotka-Volterra) Solutions with initial condition x¢y = 4, y9 = 3 obtained using
the first-order DVI scheme with different time steps for different models. Left: reference
model (2.12). Middle: a perturbed model ¥(z,y) < ¥(z,y) + 5 cos(2z). Right: a non-
canonical neural model (2.13). Exact solutions refers to refined solutions obtained using

solve_ivp on the same model.
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However, this simplification does not occur for the discrete scheme, which writes

Iynir) _ W) () _pey ) +h (1 - 2) ’

Tn+1 L, In
Tptl = Ty + h$n+1(1 - yn+1)a

(2.17)

where we plugged in z,, — x,,—1 = hx, (1 —y,). While the second component is a standard
implicit Euler method on #, the first component is more exotic, involving a logarithm
which would never appear when considering only the vector field.

The expression of the scheme shows that, while the continuous dynamics remain un-
changed under any gauge perturbation of the potential (see Remark 2.2), this is not the
case for the scheme. It thus becomes clear that if the learning process has captured a
potential with a large perturbation depending only on z, then the scheme may produce
completely different results. This is illustrated in the center plot of Figure 4, where we de-
liberately modify the potential to make the problem more stiff. We argue that such gauge
perturbations may occur during training, and propose a way to avoid them in the next
section.

3 Learning the vector field with regularization

As previously discussed, the degenerate Lagrangian systems considered here are invariant
under certain potential perturbations. Consequently, a learning procedure that preserves
this structure may generate a whole family of potentials leading to the same trajectory.
However, this property does not generally hold when using a structure-preserving scheme
such as the Discrete Variational Integrator (DVI), which is not gauge-invariant and thus
leads to the numerical issues discussed earlier (see Fig. 4). Therefore, to apply a DVI to
a learned non-canonical system, one must prevent the learning process from producing
potentials that significantly deviate from the true one. A fairly natural approach is to add
a penalization term that constrains the space of admissible potentials. This can also be
seen as introducing a prior on the potential being learned.

As in (2.14), the networks g, Hg are fitted on collocation points (z(?), (1);c7 where
7 C N indexes the data and (V) = f(z()) is given by the reference model. The loss now
also includes a regularization term (z, 2) +— re(z, %) € R?? with weight ¢ > 0, and is
therefore written

1 (i 1, (i i D)
EWKD:EﬂEZN%)—Wb%%UVHb@UM2+dVd%%zUNﬂ, (3.1)
i€
As always, the optimization is performed in batches.

The key challenge now is to propose a penalization term that effectively prevents un-
desirable symplectic potentials.

3.1 The regularization term

When performing a standard (local) error analysis on the DVI (see §A.2), denoting x}, the
solution after one time-step, we find the dominant error term

2
2(h) — 2 = o+ O(h),

22 ) (3.2)
y(h) —yn = EDyé"l (19 + Dma‘c‘) +O(R?).
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On one hand, this is unsurprising: the error of a scheme of order p generally only involves
time-derivatives of order p+ 1 and higher. On the other, these time-derivatives are usually
in the coordinates (here x and y), whereas here the gauge dependency is clear: the solution
is accurate only if ¥ is sufficiently smooth, the notion of sufficient depending on the order
of the scheme used.

Since our final goal here is to apply the first-order DVI, the penalization term (z, z;) —
ro(z, z¢) is chosen to be precisely this dominant error term (removing the value A which
can be arbitrary). It is computed by inverting the linear system

Dmﬁ@(z) + (Dxﬂ@(z)) Dyﬁg(z)
(Dyde(2))" 0

where Lg(z,2) = Yo(z,y) x; — Ho(x,y), with the differentials only applied to the
corresponding argument, not to z;. The derivation of this expression is detailed in Ap-
pendix A.2.

As before, this cost function involves a number of derivatives and thus requires au-
tomatic differentiation to compute the derivatives of the Lagrangian and Hamiltonian, as
well as to account for the derivative of the matrix inverse with respect to the potential
parameters appearing in the matrix. Since the matrices are small, differentiating through
the matrix inversion does not necessarily require additional treatment, such as applying
the implicit function theorem [ ]. Now that the modified learning problem has been
introduced, we propose to provide the technical details of the model and those necessary
for the learning process.

-
ro(z,zt) = D,[V.Lo(z, zt)]zt, (3.3)

3.2 Hyperparameters of neural networks

Parameterization. The parameterized symplectic potenial ©¥¢ and Hamiltonian Hg are
both defined as standard multi-layer perceptron (MLP) neural networks, of the form

2+ Fo, 0 pu, ,°Fe, 4 0...0pu oFoe,(2), (3.4)
with parametric linear layers Fg, and activation layers p,, and
© = (Or, pr-1,01-1, ..., 11, 01).

The linear layers correspond to an affine mapping Fg,(h) = Myh + by with parameters
©¢ = (My, by) a weight matrix and vector bias respectively. For activation layers, we chose
the so-called “self-scalable tanh” [ 1, pue (h) = tanhg (h)+pe©hOtanhg (h) with a
parameter vector 1y, where ©® denotes the componentwise product (or Hadamard product)
and tanhg is the hyperbolic tangent applied componentwise. This activation function was
originally developed for multiscale physics-informed neural networks where the network
is fitted using its differentials, which we also do here.

Normalizing the inputs. The different coordinates might involve different scales, both for
the input z and the (indirect) output z. For the input, we simply add a coordinate-wise
normalization layer before each neural network, such that each coordinate has values in
[0, 1], i.e. there is a pre-processing layer

1 1
Zl Z 7Zm}n
1
Zmaxfzmin
— , (3.5)
2d 2d
2d Z _Zml;
2 2
& Zmdaxfzmin
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the minima and maxima being determined a priori from the training set.

Normalizing the outputs. It is standard for the outputs of neural networks to be normal-
ized to facilitate learning. Here, this is crucial for the dynamics on all components to be
accurate. In the forthcoming numerical examples, this will be especially true for the guid-
ing center test case, in which some components differ by up to 4 orders of magnitude (see
Figure 23).

Since the outputs of neural networks do not correspond to the vector field directly, they
cannot be rescaled. The vector-field data also cannot be normalized, since it corresponds
to a physical quantity and determines the dynamics. Therefore, the normalization is done
in the training loss (3.1): the standard Euclidean norm is replaced with the data-informed
norm:

[uf® = u" M, (3.6)

where M = |71‘ Doier £ (20)T is a Gram matrix associated with the data.

Because the Gram matrix is symmetric positive definite,” we compute this norm us-
ing the inverse its symmetric (positive) square root M = M 12p1/2, taking the Euclidean
norm of v = M ~1/2§%. This is obtained from a singular value decomposition M = UXU "
with ¥ = diag(o?,...,0%) and UT U = Iy (owing to the symmetry of M), setting
M~12 = Ux~1/2UT. Here this is computed “on the fly” for each batch, but it could
be computed prior to the training. If this decomposition is too costly, one might prefer a
componentwise scaling M = ﬁ Yier diag(égz), e z‘él))z, to which a low-rank correc-
tion might also be applied.

4 Learning the time-discrete dynamics through the scheme

The second learning strategy aims at fitting the symplectic potential and the Hamiltonian
so as to minimize the one-step error of the numerical scheme on a trajectory. As such, the
training data consists of collocation triples (z(g] ), zgj ), zéj )) jeg indexed on J C N, which
correspond to data at times (t), t0) + b, () 4 2h) for a given time step h > 0. We look
for a symplectic potential U and a Hamiltonian Hg that nullify the mean one-step error
of the scheme, denoted Sg:

59(20721322;h) -
Do (z2,y2) — (15‘@(371,3/1) + (Dﬂ;@(mhyl))T(l’l — ) — hvxﬁe(whyl))

§ N N (4.1)
(Dy’ﬁ@ (1'2, Z/2))T12 - ((Dy’ﬁ@ <m27 3/2))T$1 + hvyH@($27 y2>>

This means that the learnt quantities may not exactly match the physical ones but a "mod-
ified” symplectic potential and Hamiltonian. Consequently, simulations on the learnt dy-
namics will be more accurate, similarly to HyperSolvers [ ].

Remark 4.1. While similar, this approach presents two key differences with those of
Deep Solvers [ , ] and HyperSolvers [ ]. First, the network does not
learn a correction term, it learns the entire Lagrangian. Second, the time-step is considered
fixed, it is not an input of the neural networks. This first difference makes the learning
more difficult, but the second makes it more simple—overall, it is just different. As pointed

3To avoid the case where M is only symmetric positive semi-definite, we actually add a small offset £1,.
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out in [ ], using an scheme which preserves structure theoretically allows the net-
work to reach a near-zero learning error.

4.1 The loss of scheme-learning

Naively minimizing the mean squared norm of this error would be unsuccessful, because
the trivial symplectic potential and Hamiltonian, Yo = 0 and Hg = 0, are actually so-
lutions. This was already taken into account in [ , ], where authors learn La-
grangians from other variational integrators by minimizing this error. To circumvent this,
they add a penalization term on the Jacobian

Jo(z0, 21, 22; h) = D3, Se(20, 21, 22; h),

encouraging either its determinant or its smallest singular value to be non-zero. Our ap-
proach also combines an error term and a regularization term (weighed by some £ > 0),
with the loss

1

Esch(@) = ﬁ

09 G P+ ogo(eE)]. 6
JjeT

where Sg ) (resp. Jg )) is the one-step error (resp. its Jacobian) evaluated at the j-th data
point (z(()] ), 24 ), zé] )). The optimization is performed in batches. Let us briefly explain this
choice of loss function.

Error term. Due to the multiscale nature of the problems we consider, we found it nec-
essary to employ a similar strategy as in the continuous case (3.1). By minimizing the
one-step error directly, the multiscale components of the data are not captured, and no
data-informed rescaling is possible. We therefore minimize the error of Newton-Raphson
iterations near the solution, which are homogeneous to the variations in phase-space and
enable the use of a data-informed norm

Hquch - UTMs;ﬁ% (4'3)

where the Gram matrix Mgy, := ﬁ > e j(zéj ) _ z%j ))(zéj ) _ z%j ))T is the discrete equi-
valent of (3.6). If this is zero, then so is the error of the scheme (4.1), while avoiding the

trivial quantities.

Regularization term. This error term ensures the accuracy of the scheme, but may fail
if the Jacobian stops being invertible. To enforce this invertibility, we add a penalization
term on its condition number, which is

w(7) = 11 |7 (1.4

This also ensures that the linear system of Newton iterations are well-conditioned. The
logarithm ensures that this error term remains small even when the physical system presents
large variations on the dataset.

This term is useful mostly at the start of the training, when the neural model varies a lot
and the Jacobian may become degenerate. Unlike in VF learning where the regularization
term needs to be minimized for the DVI to be well-behaved, here it seems to have no
impact on the final learnt model and requires only a very small weight of ¢ = 1075,
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4.2 Using very large time-steps

The scheme (2.10) being geometric means that formally, there exists a modified one-form
z — Up,(z) and a modified Hamiltonian z — H}/(2). Both are close to the original quantity
up to O(h?).

Owing to backward error analysis, we argue that the learnt dynamics are inaccurate
outside of discrete times ¢ € {0, h, 2h, ...}, or with another scheme. Therefore it seems
fairly natural for long-time simulations to wish to choose h very large. What could limit
the size of the time-step with our approach?

1. The modified quantities differ from the original ones up to an error of size O(h?),
and a large error may be compounded by iterations;

2. The modified quantities 1}, and H}, learnt by the network may only exist formally,
meaning they can only be computed up to a flat function in A — 0 (i.e. all the Taylor
coeflicients vanish at 0); the approximation is then valid only for small A.

3. During simulations, one must compute an initial guess of z,,;1. Standard approaches
may yield guesses too inaccurate for optimisation techniques to solve the scheme,
especially if it lands outside of the training set.

For the first remark, the main risk is to learn an inaccurate symplectic form, which would
yield a non-symplectic scheme—this is different from SympNets, which work with a known
symplectic form. Also, much like SympNets, there is indeed no guarantee that the Hamil-
tonian is exactly preserved along iterations: there might be a drift due to compounding
errors. This drift exists for every method of learning, and should not invalidate our ap-
proach. For the second remark, it is important to known that these formal results are an “at
worst” case, and it may still be beneficial to evaluate this approach for specific test cases.
For example, let us ignore structure and consider the Euler scheme applied to § = f(y) of
flow (t,v0) — ¢'(yo). The modified vector field fj, verifies the identity " = id + h f,,
and therefore is well-defined for all timesteps. Finally, for the third remark, it may be use-
ful to use a neural network for the initial guess. This baseline NN should not require a
particular structure, but may be invertible [ ].

5 Numerical experiments

The different learning strategies are tested on the same Neural Degenerate Lagrangian
architecture: the symplectic one-form and the Hamiltonian are different MLPs, each with
their own parameters, and normalized inputs. The optimizer is always Adam.

5.1 Lotka-Volterra

We consider here the same Lotka-Volterra problem as the one introduced in §2.3, where
the difficulties of the learning strategies have been exposed. We therefore choose not to
recall them here, but this time we will follow the approaches described in Sections 3 and 4.

Hyperparameters. The dataset consists in 2000 trajectories, separated between a training,
a test and a validation set, representing 80%, 15% and 5% of the data respectively. As
in §2.3, their initial conditions are uniformly sampled in the subset of phase space such that
H(z,y) < 4.4, and evolve over 5 time-steps with h = 0.1. This time-step and maximum
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Figure 5: (Lotka-Volterra) Numerical solutions of the reference model (2.11) with different
initial data. Left: RK4 solver with time-step A = 0.1 and 250k steps. Right: DVI solver with
time-step h = 0.1 and 100k steps. Points are displayed every 51 steps. Exact solutions are
refined numerical solutions of the reference model.
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Figure 6: (Lotka-Volterra) Refined numerical solutions for each neural model (dashed
lines), compared with the refined solutions of the reference model (solid lines), obtained
by using solve_ivp. In reading order: VF learning (VFL) with and without regularization,

and scheme learning.

energy are chosen such that trajectories at the edge of the domain are barely stable when
using the DVI scheme.

Each network ¢ and Hg, independently of the learning strategy, consists of three
layers of size 30, and the inputs are normalized as described in 3.2. The models undergo
four trainings, first during 20 epochs with a learning rate of 10~2, then 500 epochs with Ir
1073 and finally two trainings of 500 epochs with Ir 1074, The regularization parameter
is set to £ = 107° for VF learning (§3) and ¢ = 10~® for scheme learning (§4).

Results of vector-field learning. In Figure 6, we compute highly-accurate solutions of the
neural models using the solve_ivp routine of Scipy with parameters rtol=1e-10 and
atol=1e-12 over a single period, and compare them to exact solutions of the reference
model that are computed the same way. Over short times, both VF-learning neural net-
works closely match the reference model, though the regularized model is slightly more
accurate near the origin. This matches the training metrics in Figure 7, where the error
term in the loss is slightly larger for the non-regularized model, but both are small (of
order 10~%). It appears that our new regularization term has no negative impact on the
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Figure 7: (Lotka-Volterra) Evolution of the loss and the regularization term on the test
dataset throughout the training.
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Figure 8: (Lotka-Volterra) Numerical solutions of the non-canonical neural model, obtained
without regularization, for different initial conditions. Left: RK4 solver with time-step
h = 0.1 for 250k steps. Right: DVI solver with time-step h = 0.1 for 200 steps. Points are
displayed every 51 steps for the RK4 solution, every step is shown for the DVI solution.
Reference solutions are refined numerical solutions of the reference model.

accuracy of the neural model.

When observing the long-time behavior of both models in Figures 8 and 9 (and the ref-
erence model in Figure 5), the qualitative properties of the numerical schemes still hold.
Over short time intervals, the DVI is less accurate than RK4 due to its first-order nature
and the large time step used. However, over longer time periods, the DVI maintains a pe-
riodic solution that does not degrade, unlike the RK4 scheme which produces a dissipative
solution. Because of this periodicity, we stop after 100k time-steps for the (more costly)
DVI, while we perform 250k time-steps for the RK4 scheme.

Comparing the behavior of the DVI on both VF-learning models, it is clear that the
penalization method successfully addresses the gauge issue identified in Section 2 (Figure
4 on the right): without it, the DVI is unstable, and with it, the DVI is more accurate
than on the reference model. This matches the trace of the regularization term rg during
training in Figure 7 (with weight ¢ = 0 for the model “without regularization”), which is
much larger if it is not included in the loss. This further supports the idea that learning
the structure alone is not sufficient. One must also use a time integration scheme that is
adapted to this structure and, in this case, take this scheme into account during the training
process.
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Figure 9: (Lotka-Volterra) Numerical solutions of the VF-learning neural model, obtained
with regularization, for different initial conditions. Left: RK4 solver with time-step h =
0.1 for 250k steps. Right: DVI solver with time-step 4 = 0.1 for 100k steps. Points are
displayed every 51 steps for the RK4 solution, every step is shown for the DVI solution.
Reference solutions are refined numerical solutions of the reference model.
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Figure 10: (Lotka-Volterra) Numerical solutions of the scheme-learning neural model for
different initial conditions. Left: RK4 solver. Right: DVI solver. They are obtained using
a time-step A = 0.1 (same as in the dataset) for 100k steps. Points are displayed every 31
steps. Reference solutions are refined numerical solutions of the reference model.
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Figure 11: (Lotka-Volterra) Short-time numerical error for the different learning strategies
with the RK4 scheme (left) and the first-order DVI (right), as measured on the validation
set up to ¢ = 10.0. The values drawn being the median (solid line), as well as the 5th and
95th percentiles (filled area).
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Results of scheme learning. The simulations in Figure 10 using the DVI demonstrate that
the scheme-learning corrects the error of the DVI, generating highly accurate closed solu-
tions over long times. This suggests that the training process learns a modified potential
and Hamiltonian that compensate for the scheme-induced error. Since the DVI scheme is
used during training to perform time stepping, the results are consistent with those re-
ported in [ ], where learning a discrete flow was shown to yield higher accuracy
than learning the underlying ODE.

However, it is important to note that the learned model is specific to the scheme and
time step used during training, and its performance is likely to degrade when either is
altered. The short-time error analysis in Figure 11 shows that the median numerical error
is lowest when using the DVI with time-step & = 0.1, which matches the training data.
When using smaller time-steps, the error degrades and plateaus while the VF-learning
models converge with order 1 as expected (up to a learning error). The numerical solution
using RK4 scheme is also much less accurate, even with a time-step A = 0.1. This can also
be seen in Figure 6, where the exact solution of the scheme-learning model is much less
accurate than the numerical solution yielded by the DVI in Figure 10.

5.2 Massless charged particle

Consider a standard Lorentz force in two dimensions (z the 2D space variable and v the
2D velocity) with magnetic potential z — A(z) and electric potential z — ¢(z), applied
to a particle of mass m and charge g. Classically, the Lagrangian is (z,v) — $m|v|? +
qA(z) - v — qp(z). Writing z = (z,y), the magnetic potential can be chosen as (¢,0)
and still generate the same magnetic field B = 0, A, — 0,4, = —0,9, setting ¥(z,y) =
Ag(z,y) — [§ 02 Ay(x,y)dy. In the limit m — 0, the kinetic energy disappears and the
velocity can be replaced by z; in the (rescaled) Lagrangian (with g = 1),

L(x>y7$t) = ﬁ(x’y)l‘t - ‘P(% y)

For this experiment, the magnetic potential is chosen to increase from the origin as
A .
Alz,y) =LA+ 2% +y?)(—y,z)" ie

19(£7 y) = _AO Yy (1 + 2392 + %ZJQ) ) (51)

which generates a magnetic field B(x,y) = Ag(1+22%+2y?). The electrostatic potential
is

o(z,y) = Ey (2 —cos(z) — Sin(y)). (5.2)
According to (2.5), this yields the dynamics & = —0dyp/B and y = 0,/ B, i.e.
B Ey cos(y) . Epsin(z) (53)
T AT+ 222+ 242 YT Ao(l+ 222 + 242) '

This is coherent with the classical Lorentz dynamics mv = ¢(E(z) + 2 x B(z)) in the
limit m — 0, with E = —Vy and B = V X A. In the sequel, we set Ag = 1 and Fy = 1.

Hyperparameters We generate 15k initial conditions (¢, yo) in the ball of radius 7 cen-
tered at (0,7/2) such that the electrical energy is not greater than 1.5, i.e. in the set
{(z,y) € Bz(0,7/2) | ¢(z,y) < 1.5}. This is done using a Latin hypercube method in
polar coordinates around = 0,y = 7/2 and filtering the data based on the value of .
For scheme-learning, the time-step is set to be A = 0.5.
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Figure 12: (Massless charged particle). Simulations of the reference model (5.3) (top left)
VF-learning model trained without regularization (top right), VF-learning model with reg-
ularization (bottom left), scheme-learning model (bottom right), with the DVI scheme on
three different trajectories with time-step h = 0.5 for 500 time-steps.

Each network g and Hg, independently of the learning strategy, consists of two
layers of size 50, and the inputs are normalized. The models undergo three trainings, first
during 20 epochs with a learning rate of 1072, then 500 epochs with Ir 1072 and finally
500 epochs with Ir 10~%. The regularization parameter is set to ¢ = 10~ for VF learning
and ¢ = 10~ for scheme learning.

Results In the top left part of Figure 12, we can observe that the reference model (5.3),
solved with the DVI scheme, exhibits a periodic behavior for the three trajectories. Since
the time step is chosen very large, we observe some phase error. On the top right part,
we see that the VF-learning model on one trajectory (the most external one) generates a
completely wrong solution and the periodicity is lost. As with the Lotka-Volterra problem,
it is very likely that a modified potential have been learned.

On Figure 12 (bottom left), we can observe that the regularization allows us, as be-
fore, to capture the correct trajectories, even though the learning error (in phase-space,
Figure 13) is very similar to the non-regularized model. Although not identical to the ref-
erence solutions, the errors appear to be of the same order as when DVI is applied to the
real system with a large time step. The dominant error therefore seems to be that of the

21



VF with reg. VF without reg. sch. learning

3.5 3.5 3.5 % , 101
3.0 1 .é%'m‘. 3.0 1 'é@&%‘, 3.0 1 ‘i?? .Ook;%
2.5 1 ’4 ¢ S, 2.5 ’4 ?.o 038 S, 2.5 {2.. 3
% 1 e bNTS el vs | ko
204 % .&.o o~ 204 [ .'S ogé." éo:. l’g 201 'C %&"’ %
1.0 4 ,'x:ﬁ. a:.,.. . _0} 1.0 - ,'X:A;rg"‘ . .&; 1.0 4 “ -D '{. ..& 103
0.5 1 .;: 3’.-.” N 0.5 1 '{t"&v '..” N 0.5 - . ooy

S o2,
| "o 25°8, | % 0" @ 298 | &
0.0 20N s“‘@- 0.0 20N s.‘“‘qo 0.0 %, - .
05 4 W% 05 4 L33 0.5 o
T T T T T T T T T T T T T T T
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X

Figure 13: (Massless charged particle) Loss values on the validation set for the VF-learning
models with (left) or without (center) regularization, and for the scheme-learning model
(right).

schematic rather than that of learning.

On the bottom right of Figure 12, we can see that the approach that uses the scheme
to learn, thus capturing an efficient discrete flow, partially corrects the DVI error. Even
though the learning error (Figure 13) is highest where the DVI seems to be most inaccurate
(near the origin), the numerical solutions are closer to the reference solutions when using
this model. This result is comparable to those obtained for the Lotka-Volterra system,
which validates the previous conclusions.

5.3 Guiding center

This test case is an asymptotic model of plasma physics in tokamaks with a strong mag-
netic field. The position is expressed in poloidal-toroidal coordinates X = (7, 6, ¢), where
r is the minor-radial position, 6 the geometric poloidal angle, and ¢ the geometric toroidal
angle. The momentum is reduced to a single coordinate w in the toroidal direction, par-
allel to the magnetic field. Owing to the particular geometry and reduced dynamics, the
problem is non-canonical and its Lagrangian is commonly written

L(X,u, Xy) = (A(X) + ub(X)) - Xy — H(X, u),

where A = (0, Ay, Ay) is a magnetic potential from which the vector field B = V x A is
derived, and b = B/||B|| is the magnetic field unit vector.

We assume that the magnetic field is only in the toroidal direction, i.e. ub(X) - X; =
u(Ry + 7 cos(8)) ;. Reordering the coordinates into z = (6, ¢, 7, u), the Lagrangian is
then properly degenerate, i.e. it admits the (z,y) decomposition.® Following [ 1,
we write

L(97 ¢7 T, u, etv ¢t) = A@(Tv e)et + (A¢7(T) + U(RO + rcos 6))¢t - H(Tv 05 U)

with the symplectic (or magnetic) potential

_ BoR3 (rcos(f) r cos(6) _ Byr?
Ag(’l“, 9) = COS2(9) < RO — log <]. + &)>> s A¢(T) = — 2q0 . (54)

SIf the problem is not properly degenerate, then it is possible to define an equivalent Lagrangian which
is, as in [ ]. This is done by recognizing an identity A,(X)r = <L f(X) — (09.f)0 — (04 f)¢ for a
well-chosen f, and removing < f(X) by invariance.
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Figure 14: (Guiding center) The trajectories of interest in the poloidal (R, Z) plane (left)
and in the (0, u) plane (right). The initial conditions are 9 = 0.05, 8y = 0, ¢9 = 0 and
varying ug, from smallest to largest in the legend (or, in absolute value, from largest to
smallest).

The parameters are Ry the radial position of the magnetic axis; By the magnitude of the
magnetic field at Ry; go the (dimensionless) safety factor, regarded as constant. The Hamil-
tonian is a combination of kinetic and magnetic energies,

1 By r\?
H(T’, 9, u) = §u2 —+ IU,B(’I", 0), B(T, 9) = W 1 + (M) 5 (55)
Ro

where the additional parameter 4 is the (constant) magnetic moment of the particle and
B = ||B]| is the magnitude of the magnetic field. In the sequel we set By = 1, Ry = 1,
pw=2.25-10"%and ¢y = 2.

Reference behaviour We are interested in four trajectories, with the same initial position
ro = 0.05, 8g = 0 and ¢y = 0, and different initial velocities:

« BP - barely passing trajectory, ug = —7.782 - 10™%;

« BT - barely trapped trajectory, ug = —7.610 - 10~%;

« WT - well trapped trajectory, ug = —7.487 - 1074;

« DT - deeply trapped trajectory, ug = —4.306 - 10~* (also called “banana orbit”).

As can be seen in Figure 14 with the BP trajectory, if the initial velocity is large enough in
absolute value, then, similarly to a pendulum, the velocity does not change sign, i.e. the
particle never “turns back” in the tokamak (hence the terminology of passing vs trapped).
In the poloidal plane, also called the (R, Z) plane with R = Ry+r cos(f) and Z = rsin(6),
the trajectory changes from a crescent shape to a nearly circular orbit. Since the plots in
(R, Z) and in (0, u) are closely related, we will only plot the former when evaluating our
neural networks.

To perform simulations, we choose 20 time-steps per period of the DT trajectory, i.e.
h = Tpt/20 with Tpt = 37974.6. Over long-times, using the RK4 scheme fails to capture
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Figure 15: (Guiding center) Behaviour of the numerical solutions applying the RK4 or the
DVI schemes to the reference model, with time-step A = Tp7 /20 up to time ¢t = 15007 .
In phase space, the RK4 solution is plotted every 5 time-step, and only the first period is
plotted for the DVI scheme.

the passing behaviour, Figure 15. Using the DVI scheme (Figure 16), the BT trajectory is
be wrongly categorized as “passing.” This test case shows that even without considering
very long time spans, it is crucial to use a structure-preserving scheme to capture the full
set of physical solutions. Learning while preserving the structure may not be sufficient in
practice.

Pre-processing of the input We hard-code axisymmetry, the independence of the output
w.r.t. ¢, by discarding this coordinate from the inputs. Additionally, to take into account
the angular nature of 6, we apply a transformation from [ ]. Each coordinate is re-
peated k = 6 times, v € R — v1 := (v,...,v)T € RF, the angles are shifted and only their
cosine is kept. This yields a pre-processing layer of the form

0

é cose (01 + o)

, — rl ,
ul

u

where 0o € RF are parameters to be learnt (initialised randomly, uniformly in [0, 27])
and cosg is the cosine applied componentwise. The inputs are then normalized such that
all coordinates are in [0, 1], as for other problems.

The output of the Hamiltonian is also rescaled with an affine function which maps
[0, 1] to [min || 2|, max ||2]|], the extrema being determined on the training set. For scheme
learning (§4), this is replaced by the finite-difference 7 ||zn+1 — 2n -

Training details We uniformly generate 600 initial conditions in the tokamak with r;? €
[0.032,0.0552], g € [—75, ], ¢o € [0,27] and ug € [-9-107*,—3 - 107*]. Each tra-
jectory then evolves for 60 time-steps with & = Tp1/20, and is assigned to either the
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Figure 16: (Guiding center) Comparison on the reference model between the orbits from of
the exact solution and of the numerical solution obtained with the DVI using a time-step
h = Tpr/20.

training, test or validation set with ratios of 80%, 15% and 5% respectively. This construc-
tion provides some “padding” around the specific trajectories we are interested in.

Each network consists of 3 layers of dimension 48, meaning there are 5.8k parameters
in Yo and 5.8k parameters in Hg, for a total of about 12k parameters per model.” The
models are trained over 3 training: 20 epochs with learning rate 10~2, 500 with Ir 103
and 500 with Ir 10, The regularization weight is ¢ = 1 for VF learning (though we will
observe no difference when setting ¢ = 0), and € = 10~ for scheme learning.

Additionally, the first two trainings use an approximation of (4.1) in order to reduce the
number of function evaluations. This uses a first-order asymptotic expansion of ¥(x2, y2)
around (z1, 1) and is written

T LSh (20, 21, 22) =

y2 — y1 + (Dyde) ™! ((Dm’@@)T(Iﬂl — 20) — Dypdo(z2 — 21) — hvzﬁ(a) (5.6)

xr1 — X9 + h(Dyﬁe)*TVyﬁ@ ’
where every Jg and Hg are evaluated at (1, ;). Because this requires only 1 function
evaluation instead of 2, and uses a smaller matrix inversion (only on D,ve), this greatly
speeds up the otherwise slow training.

Behaviour of the models In Figure 17, it appears that the numerical solutions of the barely
passing (BP) trajectory behave qualitatively the same as for the reference model. Using the
RK4 scheme, the solution loses energy over time, ending up in a trapped trajectory. This
is confirmed in Figure 18, where this change of regime is seen in the slope of the energy
decrease. As for the other test cases, the scheme-learning model is less accurate than the
VF-learning models with this numerical scheme: the energy oscillates more. However, it
oscillates less when using the DVI, a difference of 10? in amplitude.

"Because there are 2 outputs for ¥e and only 1 for He, there are 48 more parameters in g (there is no
final bias for either network).
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Figure 18: (Guiding center) Evolution of the relative error on H for the BP trajectory of
the different neural models.

The center plots show that for this particular test case, the issue of gauge invariance
does not appear. The solution of the DVI scheme behaves well even for the model trained
without the regularization term. In fact, when monitoring the regularization term during
training, both VF-learning models have similar values. This may be due to the hard-coding
of the axisymmetry, to the relatively small size of the networks or to the fairly short train-
ing, which causes the maps to be smoother than with simpler problems. We now focus
on the model trained with the regularization term to verify that even when including this
term, the learnt dynamics are accurate.

The observations made on the BP trajectory are confirmed in Figures 19 and 20, where
we compare the exact solutions (computed with solve_ivp as in the other experiments),
the DVI-computed numerical solutions, and the reference trajectory. The VF-learning
model produced very accurate exact solutions (in dashed lines), while the scheme-learning
model is very accurate in its numerical solution using the DVI (scatter dots). Comparing
the VF-learning model with the reference model (Figure 16), the former actually behaves
better than the latter when using the DVI—especially with the BT trajectory, which re-
mains trapped with the neural model (BP also remains passing). The impact of correcting
terms in scheme learning is clear with the BT trajectory, which has the wrong behavior
when considering the exact solution, but is more accurate than VF learning when applying
the DVI. This is all confirmed in Figures 21 and 22. As in previous cases, this confirms that
the network learns a very precise discrete flow, which effectively cancels or minimizes the
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learning neural model (dashed line), the DVI-computed solutions of the VF-learning neural
model with A = Tp1/20 (scatter dots) and the reference trajectories (gray line).
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Figure 20: (Guiding center - scheme learning) Comparisons of the exact solutions of the
scheme-learning neural model (dashed line), the DVI-computed solutions of the scheme-
learning neural model with h = Tpt/20 (scatter dots) and the reference trajectories (gray
line).

scheme’s error terms. The scheme-learning model is a better choice for long-time simula-
tions, as long as the scheme and time-steps match the training.

In Figure 23, we illustrate the importance of using a multiscale norm (in our case, a
Gram-informed norm). Without it, some components are completely ignored by the loss,
since || ~ 107* < |#| ~ 1072 < || ~ 1. The trained model is then qualitatively
inaccurate, and does not capture the diversity of trajectories displayed by the reference
model.

6 Conclusion

In this paper, we build learning-based models to capture families of temporal trajectories,
given by non-canonical Hamiltonian systems. We showed that, unlike the canonical case,
one cannot directly apply a DVI scheme to a model trained with an imposed non-canonical
structure. Indeed, non-canonical models are defined only up to a potential, whereas the
DVI scheme is not invariant under such a potential shift. As a result, one may end up with
a situation where the learning procedure captures the system correctly up to a potential,
but injecting this model into the scheme leads to severe stability issues.

This highlights that, for more complex cases, one must not only impose the structure
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during training but also ensure compatibility between the learned model, its invariance
properties, and the numerical scheme.
To address this issue, we proposed two approaches.

1. learn the continuous-time model but add a penalty on the residual terms of the
scheme, which mitigates the problem. However, the scheme remains of low order
and becomes inaccurate for large time steps.

2. learn using the scheme itself, which amounts to learning a discrete flow. This re-
solves the issue and improves accuracy (since it partly corrects the scheme’s consis-
tency error), but the method is limited to the training time step.

Our next objective is to tackle even more complex problems, such as Poisson systems.
One could also enrich the learning procedure with loss functions that account for the inte-
gration of the entire trajectory, either using discrete approaches (unrolling) or continuous
ones (Neural ODEs).
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A Using degenerate variational integrators

A.1 The Jacobian of variational integrators

Usual variational integrators are based on discrete Lagrangians (z, z1) — Ly (20, z1) and
lead to the well-known discrete Euler-Lagrange equation

DoLp(2n—1,2%n) + D1Ly(2n, 2ny1) = 0. (A1)

Many papers actually focus on learning a (continuous) Lagrangian from which they obtain
discrete Euler-Lagrange equations which constitute the loss. To avoid the trivial solution
L — 0, a non-triviality condition is required. A natural way to do this is to ensure that
the Jacobian w.r.t. 2,11 in (A.1)

Jr[BrI?L] = DoD1Lp(2n, 2n+1) (A2)
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is nicely invertible, such that Newton-Raphson iterations are well-defined. Let us mention
two approaches which try to minimize the average value on the training dataset of the
following quantities,

1 10
[ I 1 — ¢—0.01det(J)’ [ l: ReLU <1 B ||J—1|2> '

Both kill two birds with one stone by penalising trivial Lagrangians and ensuring the in-
vertibility of the Jacobian. With the midpoint scheme Ly, (2o, 21) = L (232 21220) this
induces non-degenerate Lagrangian, since Do Dy Ly, = 392, L — %8§Z~L.

In the case of degenerate Lagrangians, the principal term 97, L vanishes, therefore this
reasoning must be adapted. This is also apparent for the first-order DVI (2.10), as the DEL
equation changes due to the difference between the x and y components. It becomes

DoLp(zp—1,Zn,Yn) + D1Lp(2pn, Zpt1, Yny1) =0,
D3Lh($n7 Tn+1, yn+1) = 0.

The Jacobian of the system w.r.t. (2,41, Yn+1) is no longer (A.2) but a block matrix

DEL DyDy Ds3Dq
JT[LH } = [DQD?, D32 ] Lh(xna$n+1ayn+l)-

Explicitly, the blocks are

1 3752-1—1 - 3751 1
i’j j
a7j
1 $k _ .Ik
DsD1 Ly, = (—hﬂi,ﬁ) DLy = (ﬁk,a,ﬁ ' 7n+1h - Haﬂ)
i,8 a,B

A.2 Rigorous error estimate of the scheme

Given initial conditions xg,yo denote x, =~ x(h),yn =~ y(h) the result of after one
step of the scheme (2.10). We wish to find an expression of the leading term in the er-
ror [az(h) —xp

y(h) = yn
zo + hz(0) + O(h?),

]. For this, we perform expansions, exploiting the assumed result z, =

0ja(2n) = V50 + 00 ri®(0) + O(h?), Ho(2n) = Ho + hH o 1 25(0) + O(h?),

where the maps ¥, H and their differentials are evaluated at z. Therefore, the part of the
scheme updating x can be written

(Vg0 + h0jaz™ + O0?))(x], — x)) = hH o + h*H o 12% + O(R3),

where the maps and 2 are evaluated time ¢ = 0. In the sequel, the argument of ¥, H
and their differentials is always x¢, and the time-differentials are always evaluated at time
¢t = 0, so that we may lighten the presentation. Using z] — m? = hil + O(h?) = O(h),
we find ‘ '

Vjax) = 0jaxh +hH o+ h2(Hop — j0xd’) 25 + O(RP).
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On the other hand, z(h) = xo + hd + $h2%i + O(h®), where the second-order derivative
may be obtained from the differential equation (2.5), as

0= 0@’ 4+ 0 qpid 2% — H o 33"

Therefore, with ﬁj,a;irj = H ,, the dominant error term is

N L .
Vja(@ (h) = 2) = 5 (Djapd’ — Ha) 2"+ O(R?),

i.e. in matrix-vector form, recognizing the Lagrangian,

2

z(h) — xp = —%53 +0(h?) = h (Dy9) " TD.[V, L]z + O(h?), (A.3)

2
2
where the differentials w.r.t. y and z are not applied to 4.

For the estimate in y, we recognize x_j = xg — hZ|;—o, therefore the scheme is

Oi(xn, yn) = Ui + Wdj4i? — hH ;.

A straightforward Taylor expansion also yields

. ) h2 ’
Oi(xn, yn) = Vi + V5 j(x), — x}) + i (yy — yo) + Eﬂi,k,kfékék + O(h?).

Reordering the terms, we find

J _ J h2 ,
xh x() _ hH’Z _ ?192'7k7k:/22k2k + O(h3)

Vil = Vi + hjid? — ho;
Since zj, = mo + hi + h2& + O(h3), we find

Diwth = Diwyt + h (055 — Vi j)i? — H;) —h? (ﬂi,ji‘j + %ﬁi,k,kfékék/) + O(h?).

:ﬂi,uyy

The exact solution satisfies y(h) = yo + hy + 3h2§j + O(h?), therefore the error term is
2

h 4 ,
Oiw (7 (R) —yi) = 50iu§” + h? (ﬁi,j:‘éﬂ o+ 10, g 2P 2 ) +O(h3). (A4)

The second-order derivative on y is obtained from
0 =i + Viwsd” 25 + (05 — 950) 3 + (Vijp — Oy )37 2% + H 2",
which, by combining ¥;, j,krdcj + VY = 19i7k7k/z'k , is reordered
Vil = (05 — Vi )i — Oy g 2825 + (955087 — H )2~
This may finally be injected in the error term to find

h? Y ¥ )
Yiw (Y7 (h) —yp) = > ((193‘,@‘ — ;)i — 0 g 2N 4 (067 — H,i,k)zk)

1 /
+ h? (ﬂi,jii‘] + ?%,k,k/ékék ) +O(h?),
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After simplification, this is written in the vector form

mm—%:44%m4(wm+DﬁWmJumﬂQ+om% (A.5)

where, again, the differentials w.r.t.  and z are only applied to the maps of the Lagrangian,
not to . The second-order derivative & may also be replaced using the error term x(h) —
xp, which yields

D9 + D97 Dyﬁ] [m(h) — :):h] _ h?

D7 0 | ly(h) - um 4§DAVA¢a+Om%. (A.6)

Remark A.1. Noticing the identity 19i,jij + %1%,67,421‘32'1“/ = % (79 + D9% — DyﬁgJ), the
error term in (A.4) is simply
h2 /..
Dyd (y(h) = yn) = = (9 + Dav &) + O(?),

i.e., the regularity of ¥ impacts the accuracy of the scheme. Similarly, the symmetric part
of D, appears in this error term, even though has no influence on the original dynamics.
All this explains why the gauge choice matters in this context.

B Brief study of the guiding center

B.1 Deriving the dynamics

It is standard to write these equations using the effective magnetic potential AL =14 =
Ay + u. Assuming only Ag 4 = Ag,, = 0, the Euler-Lagrange equations are
A97r7‘" + Agﬂé = A979(9‘ + A;gq'ﬁ — H79
T T4 T Ty — Al 4
Agot + Ao g0+ A 40+ Ayt = 44 00— Hy
0=Ag,0+Al é—H,
0=A} ¢— H,.

Considering the lines in order (4, 3, 1, 2), this can be transformed into a triangular system,

s M g HeoALS . ALd-Heo ALO+ AL+ H,
A;u , Agr ’ Ag ’ Ajj),u

These dynamics are well defined only if Ay, and AL ,, are non-zero, which corresponds
Agyr 0

T
A(b?r A¢,U

expression of the Hamiltonian and of Al = Ay + u, along with the assumption Agg =
Ay ¢ = 0, finally yields

to the invertibility of Dy = < ) . Reordering into (6, ¢, 7, u), injecting the

uB, — Agu

pB.g o = PBoAss

b= B A@,r ’ B AO,T ’

) (Z):uv r=

)
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Denoting p = 7 cos(0)/Ro, Z = rsin(6)/Ro, 7 = /(g0 Ro), these quantities are

_ Bor A = Byr B — BovV1+72 72 p
O,r — 1+p7 b, — % P T T(1+p) 1+,7"\2 1+p P (B 1)
Bor?Z 2 BoZV1+ 72 '
Agg = (210g(1 +p)—2p+ : 0= 5
P ) L+p (1+p)?

B.2 Computing the magnetic potential and its differentials

The expressions of Ag and A g are unstable for small values of cos(f), even though the
functions are well-defined in this limit. Therefore, we compute them using an integral
form,

tdt
14 pt’

1 L2 gy
Ap(0,1) = B()T2/ Ago(0,1) = B()TQZ/ (
0 0

1+ pt)*

where, again, p = r cos(0)/Ry and Z = rsin(6)/Ry. This is more costly to evaluate and
less accurate for p ~ —1, but uniformly stable for all values of 6.

We compute Ag and Ay ¢ using this form and evaluating the integral with a Gauss-
Legendre integration. A highly-accurate reference value was computed in Julia using
BigFloat and 50 collocation points. Using double-precision with 20 collocation points,
this method computes the integral in Ay ¢ with an error of 1.7 - 107! for p = —0.9, and
of less than 10715 for —0.8 < p < 0.9. The error is slightly smaller for the integral in
Ay. For comparison, using p = 1076 in the closed formula from (B.1) yields an error of
2.1 - 10~* with double-precision floats.

Some floating-point magic tricks might make the closed formula more accurate, using
e.g. Logip,® but we did not find any, and they might be processor-dependent.

*For example, computing (logip(z)/x —1)/((1 + x) — 1) is more accurate than (logip(z)/z — 1) /x
for small values of .
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